Monitoring relays - GAMMA series
Multifunction, fault latch
Monitoring of phase sequence and phase failure
Monitoring of asymmetry selectable
Connection of neutral wire optional
Detection of loss of neutral wire
Supply voltage selectable via power modules
2 change-over contacts
Width 45 mm
Industrial design

Technical data

1. Functions

Voltage monitoring in 3-phase mains with adjustable thresholdes, adjustable tripping delay, monitoring of phase sequence and phase failure, monitoring of asymmetry with adjustable threshold and the following functions which are selectable by means of rotary switch:

UNDER	Undervoltage monitoring
UNDER+SEQ	Undervoltage monitoring and monitoring of
phase sequence	

2. Time ranges

Start-up suppression time:
Tripping delay:
Adjustment range
3. Indicators

Red LED Asym ON:
Ree LED max/min ON/OFF:
Red LED max/min flashes:
Red LED SEQ ON:
Yellow LED ON/OFF:
0.1s 10s
indication asymmetry failure
indication of failure of the corresponding threshold indication of tripping delay of the corresponding threshold indication phase sequence failure indication of relay output

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounting on DIN-Rail TS 35 according to EN 60715
Mounted position: any. Shockproof terminal connection according to VBG
4 (PZ1 required), IP rating IP20. Tightening torque: max. 1 Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end
5. Input circuit

Supply voltage:
12 to 500V AC
Tolerance:
Rated frequency:
Rated consumption: Duration of operation:
Reset time:
Residual ripple for DC:
Drop-out voltage:
Overvoltage category:
Rated surge voltage:
terminals A1-A2 (galvanically seperated) selectable via power modulesTR3 according to specification of power module according to specification of power module 4VA (3W)
100\%
500 ms
>30\% of the supply voltage
III (in accordance with IEC 60664-1) 6kV
6. Output circuit

2 potential free change-over contacts
Rated voltage:
250V AC
Switching capacity
1250VA (5A/250V AC)
Fusing
Mechanical life:
Electrical life:
Switching frequency:

Overvoltage category:
Rated surge voltage:
5A fast acting
20×10^{6} operations
2×10^{5} operations at 1000 VA resistive load
max. $60 / \mathrm{min}$ at 100 VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load (in accordance with IEC 60947-5-1) III (in accordance with IEC 60664-1) 6kV
7. Measuring circuit

Fusing:
Measured variable
Measured input:
$3 \sim 500 \mathrm{~V}$
3(N)~ 690/400V
Overload capacity:
3(N)~ 500V
3(N)~ 690/400V
Input resistance:
3~500V
3(N)~ 690/400V
Switching threshold
Max:
Min:
Asymmetry:
Overvoltage category: III (in accordance with IEC 60664-1)
Rated surge voltage:
8. Accurary

Base accurary:
Frequency response:
Adjustment accurary:
Repetition accurary:
Voltage influence:
Temperature influence:
9. Ambient conditions

Ambient temperature:
Storage temperature:
Transport temperature
Relative humidity:
Pollution degree:
Vibration resistance:
Shock resistance:

6 kV
max. 20A (in accordance with UL 508) AC Sinus (48 to 63 Hz)
terminals (N)-L1-L2-L3 (G4PM500VSYL20)
terminals (N)-L1-L2-L3 (G4PM690VSYL20)
3(N)~ 700V (G4PM500VSYL20)
3(N)~ 950/550V (G4PM690VSYL20)
1M (G4PM500VSYL20)
1M (G4PM690VSYL20)
-20% to $+30 \%$ of U_{N}
-30% to $+20 \%$ of U_{N}
5% to 25%
$\leq 3 \%$ of maximum scale value
$\leq 5 \%$ of maximum scale value $\leq 2 \%$
$\leq 0.05 \% /{ }^{\circ} \mathrm{C}$
-25 to $+55^{\circ} \mathrm{C}$ (in accordance with IEC 60068-1)
-25 to $+40^{\circ} \mathrm{C}$ (in accordance with UL 508)
-25 to $+70^{\circ} \mathrm{C}$
-25 to $+70^{\circ} \mathrm{C}$
15% to 85%
(in accordance with IEC 60721-3-3 class 3K3)
3 (in accordance with IEC 60664-1)
10 bis 55 Hz 0.35 mm
(in accordance with IEC 60068-2-6)
15 g 11 ms (in accordance with IEC 60068-2-27)

Functions

For all the functions the LEDs Min and Max are flashing alternating, when the minimum value for the measured voltage was chosen to be greater than the maximum value. If a failure already exists when the device is activated, the output relay remains in off-position and the LED for the corresponding threshold is illuminated.

Under voltage monitoring (UNDER, UNDER+SEQ)

When the measured voltage (mean value of phase-to-phase voltages) falls below the value adjusted at the MIN-regulator, the set interval of the tripping delay (DELAY) begins (red LED MIN flashes). After the interval has expired (red LED MIN illuminated), the output relay switches into off-position (yellow LED not illuminated), the output relay again switches into on-position (yellow LED illuminated), when the measured voltage exceeds the value adjusted at the MAX-regulator.

Windowfunction (WIN, WIN+SEQ)

The output relay switches into on-position (yellow LED illuminated) when the measured voltage (mean value of phase-to-phase voltages) exceeds the value adjusted at the MIN-regulator. When the measured voltage exceeds the value adjusted at the MAX-regulator, the set interval of the tripping delay (DELAY) begins (red LED MAX flashes). After the interval has expired (red LED MAX illuminated) the output relay switches into off-position (yellow LED not illuminated). The output relay again switches into on-position (yellow LED illuminated) when the measured voltage falls below the value adjusted at the MAX-regulator (red LED MAX not illuminated). When the measured voltage falls below the value adjusted at the MIN-regulator, the set interval of tripping delay (DELAY) begins again (red LED MIN flashes). After the interval has expired (red LED MIN illuminated), the output relay switches into off-position (yellow LED not illuminated).

Phase sequence monitoring (SEQ)

Phase sequence monitoring is selectable for all functions. If a change in phase sequence ist detected (red LED SEQ illuminated), the output relay switches into off-position immetiately (yellow LED not illuminated).

Phase failure monitoring (SEQ)
If one of the phase voltages fails, the set interval of the tripping delay (DELAY) begins (red LED SEQ flashes). After the interval has expired (red LED SEQ illuminated), the output relay switches into off-position (yellow LED not illuminated).
Reverse voltages of a consumer (e.g. a motor which conitnues to run on two phases only) do not effect the disconnection but can be monitoring by using a proper value for the asymmetry.

Asymmetry monitoring
If the asymmetry of the phase-to-phase voltages exceeds the value set at the ASYM-regulator, the set interval of the tripping delay (DELAY) begins (red LED ASYM flashes). After the interval has expired (red LED ASYM illuminated), the output relay switches into off-position (yellow LED not illuminated). If the neutral wire is connected to the device, the asymmetry of the phase voltages referred to the neutral wire (Y -voltage) is monitored also. In that case both values of the asymmetry are evaluated and if one of the values exceeds the value set at the ASYM-regulator, the set interval of the tripping delay (DELAY) begins (red LED ASYM flashes). After the interval has expired (red LED ASYM illuminated), the output relay switches into off-position (yellow LED not illuminated).

Loss of neutral wire by means of evaluation of asymmetry A break of the neutral wire between power line and machinery is detected as soon as asymmetry between phase-to-phase voltage and neutral wire occurs. If the asymmetry exceeds the value set at the ASYM-regulator, the set interval of the tripping delay (DELAY) begins (red LED ASYM flashes). After the interval has expired (red LED ASYM illuminated). A break of the neutral wire between our device and the machinery can not be detected.

Fault latch
The functions UNDER+L, UNDER+SEQ+L, WIN+L and WIN+SEQ+L include a fault latch. The fault latch is active for all monitoring functions UNDER or WIN, asymmetry and phase sequence. Faults will be stored if the tripping delay has expired and the fault is effective on the output relay. The fault latch keeps the output in off-position after a fault and freezes the LEDs for fault indication.
Saved faults may be reset by interruption the supply voltage.

Connections

G4PM690VSYL20 mit Powermodul 24V AC

G4PM690VSYL20 mit Powermodul 400V AC

G4PM500VSYL20 mit Powermodul 500V AC

Dimensions

